Conjugate Temperatures

Elizabeth Kochneff
University of Illinois at Chicago, P.O. Box 4348, Chicago, Illinois 60680, U.S.A.

AND

Yoram Sagher

University of Illinois at Chicago, P.O. Box 4348, Chicago, Illinois 60680, U.S.A. and Syracuse University, Syracuse, New York 13210, U.S.A.

Communicated by Paul Nevai
Received February 26, 1991; revised July 15, 1991

> We develop Cauchy-Riemann equations for pairs of temperature functions with boundary values in $L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$. (C) 1992 Academic Press, Inc.

1. Introduction

The Cauchy-Riemann equations $D_{x} u=D_{y} v$ and $D_{y} u=-D_{x} v$ can be viewed as a splitting of Laplace's equation $D_{x}^{2} u+D_{y}^{2} u=0$. The pair of solutions of the Cauchy-Riemann equations, for a large class of functions, is related via the Hilbert transform.

We show that for a large class of functions the Hilbert transform similarly splits the heat equation $D_{t} u(x, t)=D_{x}^{2} u(x, t)$.

Write $(u(x, t), v(x, t)) \in \mathscr{A} \mathscr{H}$ if

$$
\begin{equation*}
D_{x} u(x, t)=-i D_{t}^{1 / 2} v(x, t) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
i D_{t}^{1 / 2} u(x, t)=D_{x} v(x, t) \tag{2}
\end{equation*}
$$

for $t>0$ and $x \in R$, where $D_{t}^{1 / 2}$ is a Weyl fractional derivative operator (see below).

We show that for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right.$, if $u(x, t)=g * k(x, t)$, where $k(x, t)$ is the Gauss-Weierstrass kernel, then $(u(x, t), \mathscr{H} u(x, t)) \in \mathscr{A} \mathscr{H}$, where $\mathscr{H} u(x, t)$ denotes the Hilbert transform of $u(x, t)$ with respect to the first variable.

Weyl's fractional integral of order $\alpha>0$ is defined by

$$
\begin{equation*}
D^{-\alpha} f(t)=\frac{e^{i \pi \alpha}}{\Gamma(\alpha)} \int_{t}^{\infty} f(u)(u-t)^{\alpha-1} d u \tag{3}
\end{equation*}
$$

and the fractional derivative of order $\alpha>0$ is

$$
\begin{equation*}
D^{\alpha} f(t)=\frac{e^{i \pi \tilde{\alpha}}}{\Gamma(\tilde{\alpha})} \int_{t}^{\infty} f^{(n)}(u)(u-t)^{\tilde{\alpha}-1} d u \tag{4}
\end{equation*}
$$

where $\alpha=n-\tilde{\alpha}$, for a positive integer n and $0<\tilde{\alpha} \leqslant 1$.
This version of the Weyl fractional derivative was proposed by M. Riesz in [3]. It is shown in [3] that for functions f which are sufficiently regular we have $D^{\alpha} D^{\beta} f=D^{\alpha+\beta} f$ and $(d / d t) D^{-1} f=f$. In particular, if $u(x, t)$ and $v(x, t)$ are nice enough, then $(u(x, t), v(x, t)) \in \mathscr{A} \mathscr{H}$ implies

$$
\begin{aligned}
D_{t} u(x, t) & =D_{t}^{1 / 2} D_{t}^{1 / 2} u(x, t)=-i D_{t}^{1 / 2} D_{x} v(x, t) \\
& =-i D_{x} D_{t}^{1 / 2} v(x, t)=D_{x}^{2} u(x, t)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{t} v(x, t) & =D_{t}^{1 / 2} D_{t}^{1 / 2} v(x, t)=i D_{t}^{1 / 2} D_{x} u(x, t) \\
& =i D_{x} D_{t}^{1 / 2} u(x, t)=D_{x}^{2} v(x, t)
\end{aligned}
$$

so that $u(x, t)$ and $v(x, t)$ satisfy the heat equation.
For $f \in L^{p}(R), 1 \leqslant p<\infty$, the Hilbert transform is defined a.e. by

$$
\begin{equation*}
\mathscr{H} f(x)=\text { p.v. } \frac{1}{\pi} \int_{R} \frac{f(s)}{x-s} d s . \tag{5}
\end{equation*}
$$

We prove our results for $f \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$; this space contains $B M O(R)$. For $f \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$, the above integral might fail to converge. In this case the Hilbert transform may be defined a.e. up to additive constants by

$$
\begin{equation*}
\mathscr{H} f(x)=\text { p.v. } \frac{1}{\pi} \int_{R}\left(\frac{1}{x-s}+\frac{1}{(s)_{1}}\right) f(s) d s \tag{6}
\end{equation*}
$$

where $1 /(s)_{\delta}=1 / s$ for $|s|>\delta$ and zero otherwise.
Suppose $f \in L^{2}(R)$. The Fourier transform of f is defined

$$
\begin{equation*}
\hat{f}(t)=\int_{R} f(x) e^{-i x t} d x \tag{7}
\end{equation*}
$$

The function f is obtained from its Fourier transform by the Fourier inversion formula

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{R} \hat{f}(t) e^{i x t} d t \tag{8}
\end{equation*}
$$

The Fourier transforms of $f \in L^{2}(R)$ and of $\mathscr{H} f$ are related by the identity

$$
\begin{equation*}
\widehat{\mathscr{H} f(x)}=-i \operatorname{sgn} x \cdot \hat{f}(x) . \tag{9}
\end{equation*}
$$

2. Conjugate Temperatures

Let $\mathscr{G}(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}$. The fundamental solution of the heat equation is the Gauss-Weierstrass kernel

$$
\begin{equation*}
k(x, t)=\frac{1}{\sqrt{2 t}} \mathscr{G}\left(\frac{x}{\sqrt{2 t}}\right)=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t} \tag{10}
\end{equation*}
$$

We define its conjugate by

$$
\begin{equation*}
S(x, t)=\frac{1}{\sqrt{2 t}} S\left(\frac{x}{\sqrt{2 t}}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
S(x)=\mathscr{H} \mathscr{G}(x)=\frac{1}{\pi} e^{-x^{2} / 2} \int_{0}^{x} e^{u^{2} / 2} d u \tag{12}
\end{equation*}
$$

See [1].
Since $\hat{k}(x, t)=e^{-t x^{2}}$ for $t>0$, we have from the Fourier inversion formula

$$
\begin{equation*}
k(x, t)=\frac{1}{\pi} \int_{0}^{\infty} e^{-t y^{2}} \cos x y d y \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
S(x, t)=\frac{1}{\pi} \int_{0}^{\infty} e^{-t y^{2}} \sin x y d y \tag{14}
\end{equation*}
$$

THEOREM 1. For $t>0$ and $x \in R$,

$$
\begin{equation*}
(k(x, t), S(x, t)) \in \mathscr{A} \mathscr{H} \tag{15}
\end{equation*}
$$

Proof. Since

$$
D_{t} S(x, t)=\frac{-1}{\pi} \int_{0}^{\infty} y^{2} e^{-t y^{2}} \sin x y d y
$$

we have

$$
\begin{aligned}
-i D_{t}^{1 / 2} S(x, t) & =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} D_{t} S(x, u+t) u^{-1 / 2} d u \\
& =\frac{-1}{\pi \sqrt{\pi}} \int_{0}^{\infty}\left(\int_{0}^{\infty} y^{2} e^{-(u+t) y^{2}} \sin x y d y\right) u^{-1 / 2} d u \\
& =\frac{-1}{\pi \sqrt{\pi}} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-u y^{2}} u^{-1 / 2} d u\right) y^{2} e^{-t y^{2}} \sin x y d y \\
& =-\frac{1}{\pi} \int_{0}^{\infty} y e^{-t y^{2}} \sin x y d y=D_{x} k(x, t)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
i D_{t}^{1 / 2} k(x, t) & =\frac{-1}{\sqrt{\pi}} \int_{0}^{\infty} D_{t} k(x, u+t) u^{-1 / 2} d u \\
& =\frac{1}{\pi \sqrt{\pi}} \int_{0}^{\infty}\left(\int_{0}^{\infty} y^{2} e^{-(u+t) y^{2}} \cos x y d y\right) u^{-1 / 2} d u \\
& =\frac{1}{\pi \sqrt{\pi}} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-u y^{2}} u^{-1 / 2} d u\right) y^{2} e^{-t y^{2}} \cos x y d y \\
& =\frac{1}{\pi} \int_{0}^{\infty} y e^{-t y^{2}} \cos x y d y=D_{x} S(x, t)
\end{aligned}
$$

We now consider conjugate temperatures which are convolutions of initial values $g(x) \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$ with $k(x, t)$ and $S(x, t)$. However, for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$, the convolution $g * S(x, t)$ is not always defined because $S(x, t)=O(1 /|x|)$ as $|x| \rightarrow \infty$; see, e.g., [2]. Therefore, in analogy with (6), we define up to additive constants

$$
\begin{equation*}
\tilde{S} g(x, t)=\int_{R}[S(x-y, t)+S(y)] g(y) d y \tag{16}
\end{equation*}
$$

This operator is defined for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$ since, as we will show later,

$$
S(x-y, t)+S(y)=O\left(\frac{1}{y^{2}}\right), \quad|y| \rightarrow \infty
$$

We show that for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$ we have

$$
(g * k(x, t), \widetilde{S} g(x, t)) \in \mathscr{A} \mathscr{H} .
$$

For $g \in L^{p}(R), 1 \leqslant p<\infty$, since $D_{t}^{1 / 2}(1)=0$, this is equivalent to

$$
(g * k(x, t), g * S(x, t)) \in \mathscr{A} \mathscr{H} .
$$

We denote by C a positive constant, not necessarily the same on different occurrences.

Lemma 2. If $0<\alpha<1, \beta>2 \alpha, x>0$; and if for all $t>0$,

$$
\left|D_{t} w(t)\right| \leqslant \min \left\{\frac{1}{x^{\beta}}, \frac{1}{t^{\beta / 2}}\right\},
$$

then

$$
\begin{equation*}
\left|D_{t}^{1-\alpha} w(t)\right| \leqslant C \cdot \min \left\{\frac{1}{x^{\beta-2 \alpha}}, \frac{1}{t^{(\beta-2 \alpha) / 2}}\right\} . \tag{17}
\end{equation*}
$$

Proof. Since

$$
D_{t}^{1-\alpha} w(t)=\frac{e^{i \pi \alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} D_{t} w(u+t) u^{\alpha-1} d u,
$$

we have

$$
\left|D_{t}^{1-\alpha} w(t)\right| \leqslant \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{1}{(u+t)^{\beta / 2}} u^{\alpha-1} d u=\frac{\Gamma((\beta-2 \alpha) / 2)}{\Gamma(\beta / 2)} \cdot \frac{1}{t^{(\beta-2 \alpha) / 2}} .
$$

We also have

$$
\begin{aligned}
\left|D_{t}^{1-\alpha} w(t)\right| & \leqslant \frac{1}{\Gamma(\alpha)}\left(\frac{1}{x^{\beta}} \int_{0}^{x^{2}} u^{\alpha-1} d u+\int_{x^{2}}^{\infty} \frac{1}{(u+t)^{\beta / 2}} u^{\alpha-1} d u\right) \\
& \leqslant \frac{1}{\Gamma(\alpha)}\left(\frac{1}{\alpha x^{\beta-2 \alpha}}+\frac{2}{\beta-2 \alpha} \cdot \frac{1}{x^{\beta-2 \alpha}}\right) .
\end{aligned}
$$

Lemma 3. For $t>0$ and $x \in R$, we have

$$
\begin{align*}
& \left|D_{2} k(x, t)\right| \leqslant C \cdot \min \left\{\frac{1}{|x|^{3}}, \frac{1}{t^{3 / 2}}\right\}, \tag{18}\\
& \left|D_{x} S(x, t)\right| \leqslant C \cdot \min \left\{\frac{1}{x^{2}}, \frac{1}{t}\right\}, \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\left|D_{t} S(x, t)\right| \leqslant C \cdot \min \left\{\frac{1}{|x|^{3}}, \frac{1}{t^{3 / 2}}\right\} . \tag{20}
\end{equation*}
$$

Proof. Note that

$$
D_{t} k(x, t)=\frac{1}{4 \sqrt{\pi}}\left(\frac{x^{2}}{2 t}-1\right) \frac{1}{t^{3 / 2}} e^{-x^{2} / 4 t}
$$

and for $t, \beta>0$

$$
\begin{equation*}
\frac{1}{t^{\beta}} e^{-x^{2} / 4 t} \leqslant\left(\frac{4 \beta}{e}\right)^{\beta} \cdot \frac{1}{|x|^{2 \beta}} \tag{21}
\end{equation*}
$$

We have for $x^{2}>2 t$

$$
\begin{aligned}
\left|D_{i} k(x, t)\right| & \leqslant \frac{1}{4 \sqrt{\pi}} \cdot \frac{x^{2}}{2} \cdot \frac{1}{t^{5 / 2}} e^{-x^{2} / 4 t} \\
& \leqslant \frac{x^{2}}{8 \sqrt{\pi}} \cdot\left(\frac{10}{e}\right)^{5 / 2} \cdot \frac{1}{|x|^{5}} \\
& =\frac{1}{8 \sqrt{\pi}}\left(\frac{10}{e}\right)^{5 / 2} \cdot \min \left\{\frac{1}{|x|^{3}}, \frac{1}{(2 t)^{3 / 2}}\right\} .
\end{aligned}
$$

We have for $x^{2} \leqslant 2 t$

$$
\left|D_{t} k(x, t)\right| \leqslant \frac{1}{4 \sqrt{\pi}} \frac{1}{t^{3 / 2}}=\frac{1}{4 \sqrt{\pi}} \cdot \min \left\{\frac{2^{3 / 2}}{|x|^{3}}, \frac{1}{t^{3 / 2}}\right\} .
$$

This proves (18).
Observe that $D_{x} S(x, t)=i D_{t}^{1 / 2} k(x, t)$. Therefore by Lemma 2 applied to (18), we have

$$
\left|D_{x} S(x, t)\right| \leqslant C \cdot \min \left\{\frac{1}{x^{2}}, \frac{1}{t}\right\},
$$

which proves (19).
Since $D_{t} S(x, t)=D_{t}^{1 / 2} D_{t}^{1 / 2} S(x, t)=i D_{t}^{1 / 2}\left(D_{x} k(x, t)\right)$, the proof of (20) is similar.

Lemma 4. For $t>0$ and $x, y \in R$,

$$
\begin{align*}
|S(x-y, t)+S(y)| \leqslant & C \cdot\left(\frac{|x|}{t} \chi_{\{|y| \leqslant 2|x|\}}(y)+\frac{|x|}{y^{2}} \chi_{\{|y|>2|x|\}}(y)\right) \\
& +C \cdot \min \left\{\frac{|t-1 / 2|}{|y|^{3}}, \frac{|\sqrt{2 t}-1|}{\sqrt{t}}\right\} . \tag{22}
\end{align*}
$$

Proof. Since $S(y, t)=-S(-y, t)$ we have

$$
\begin{aligned}
|S(y, t)+S(x-y, t)| & \leqslant \operatorname{sgn} x \int_{y-x}^{y}\left|D_{s} S(s, t)\right| d s \\
& \leqslant C \cdot \operatorname{sgn} x \int_{y-x}^{y} \min \left\{\frac{1}{t}, \frac{1}{s^{2}}\right\} d s .
\end{aligned}
$$

For all y, the last term is majorized by $C \cdot|x| / t$. If $|y|>2|x|$, then the integral is majorized by

$$
\operatorname{sgn} x \int_{y-x}^{y} \frac{1}{s^{2}} d s=\left|\frac{x}{y(y-x)}\right| \leqslant \frac{2|x|}{y^{2}} .
$$

We have shown that

$$
\begin{equation*}
|S(y, t)+S(x-y, t)| \leqslant C \cdot\left(\frac{|x|}{t} \chi_{\{|y| \leqslant 2|x|\}}(y)+\frac{|x|}{y^{2}} \chi_{\{|y|>2|x|\}}(y)\right) \tag{23}
\end{equation*}
$$

We show next that

$$
\begin{equation*}
|S(y, t)-S(y)| \leqslant C \cdot \min \left\{\frac{|t-1 / 2|}{|y|^{3}}, \frac{|\sqrt{2 t}-1|}{\sqrt{t}}\right\} . \tag{24}
\end{equation*}
$$

Since $S(y)=S\left(y, \frac{1}{2}\right)$, we have

$$
\begin{aligned}
|S(y, t)-S(y)| & \leqslant \operatorname{sgn}\left(t-\frac{1}{2}\right) \int_{1 / 2}^{t}\left|D_{\tau} S(y, \tau)\right| d \tau \\
& \leqslant C \cdot \operatorname{sgn}\left(t-\frac{1}{2}\right) \int_{1 / 2}^{t} \min \left\{\frac{1}{|y|^{3}}, \frac{1}{\tau^{3 / 2}}\right\} d \tau \\
& \leqslant C \cdot \min \left\{\frac{|t-1 / 2|}{|y|^{3}}, \frac{|\sqrt{2 t}-1|}{\sqrt{t}}\right\} .
\end{aligned}
$$

By combining (23) and (24) we get the result.
In particular Lemma 4 shows

$$
\begin{equation*}
|S(x-y, t)+S(y)|=O\left(\frac{1}{y^{2}}\right), \quad|y| \rightarrow \infty \tag{25}
\end{equation*}
$$

Theorem 5. If $g(x) \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$, then for $t>0$ and $x \in R$,

$$
\begin{equation*}
-i D_{t}^{1 / 2} \tilde{S} g(x, t)=D_{x}(g * k)(x, t) \tag{26}
\end{equation*}
$$

Proof. It is easy to see that

$$
D_{t} \int_{R}(S(x-y, t)+S(y)) g(y) d y=\int_{R} D_{t} S(x-y, t) g(y) d y
$$

Therefore,

$$
\begin{aligned}
& D_{t}^{1 / 2} \int_{R}(S(x-y, t)+S(y)) g(y) d y \\
& \quad=\frac{i}{\sqrt{\pi}} \int_{0}^{\infty} D_{t}\left(\int_{R}(S(x-y, u+t)+S(y)) g(y) d y\right) u^{-1 / 2} d u \\
& \quad=\frac{i}{\sqrt{\pi}} \int_{0}^{\infty}\left(\int_{R} D_{t} S(x-y, u+t) g(y) d y\right) u^{-1 / 2} d u \\
& \quad=\frac{i}{\sqrt{\pi}} \int_{R} g(y)\left(\int_{0}^{\infty} D_{t} S(x-y, u+t) u^{-1 / 2} d u\right) d y \\
& \quad=\int_{R} g(y) D_{t}^{1 / 2} S(x-y, t) d y \\
& \quad=i \int_{R} g(y) D_{x} k(x-y, t) d y \\
& \quad=i D_{x}(g * k)(x, t)
\end{aligned}
$$

Here the application of Fubini's theorem is justified by

$$
\begin{aligned}
\int_{0}^{\infty}\left|D_{t} S(y, u+t)\right| u^{-1 / 2} d u & \leqslant C \int_{0}^{\infty} \min \left\{\frac{1}{|y|^{3}}, \frac{1}{(u+t)^{3 / 2}}\right\} u^{-1 / 2} d u \\
& \leqslant C \cdot \min \left\{\frac{1}{y^{2}}, \frac{1}{t}\right\}
\end{aligned}
$$

Theorem 6. If $g(x) \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$, then for $t>0$ and $x \in R$,

$$
\begin{equation*}
i D_{t}^{1 / 2}(g * k)(x, t)=D_{x} \widetilde{S} g(x, t) \tag{27}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& D_{t}^{1 / 2} \int_{R} g(x-y) k(y, t) d y \\
& \quad=\frac{i}{\sqrt{\pi}} \int_{0}^{\infty} D_{r}\left(\int_{R} g(x-y) k(y, u+t) d y\right) u^{-1 / 2} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{i}{\sqrt{\pi}} \int_{0}^{\infty}\left(\int_{R} g(x-y) D_{t} k(y, u+t) d y\right) u^{-1 / 2} d u \\
& =\frac{i}{\sqrt{\pi}} \int_{R} g(x-y)\left(\int_{0}^{\infty} D_{t} k(y, u+t) u^{-1 / 2} d u\right) d y \\
& =\int_{R} g(x-y) D_{t}^{1 / 2} k(y, t) d y \\
& =-i \int_{R} g(x-y) D_{y} S(y, t) d y \\
& =-i \int_{R} g(y) D_{y} S(x-y, t) d y \\
& =-i \int_{R} g(y) D_{x}(S(x-y, t)+S(y)) d y \\
& =-i D_{x} \tilde{S} g(x, t)
\end{aligned}
$$

Here the application of Fubini's theorem is justified by (18).
It is well-known that for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$,

$$
\lim _{t \rightarrow 0+} g * k(x, t)=g(x)
$$

at all Lebesgue points of $g(x)$. (In fact this holds for a much larger class of functions; see, e.g., [4].) The following theorem was proved in [1] for $g \in L^{p}(R), 1 \leqslant p<\infty$.

Theorem 7. For $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$,

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \tilde{S} g(x, t)=\mathscr{H} g(x) \quad \text { a.e. on } R . \tag{28}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\tilde{S} g(x, t)= & \int_{R}(S(x-y, t)+S(y)) g(y) d y \\
= & \int_{R}\left(S(x-y, t)-\frac{1}{\pi(x-y)_{\sqrt{2 t}}}\right) g(y) d y \\
& +\int_{R}\left(S(y)-\frac{1}{\pi(y)_{1}}\right) g(y) d y \\
& +\frac{1}{\pi} \int_{R}\left(\frac{1}{(x-y)_{\sqrt{2 t}}}+\frac{1}{(y)_{1}}\right) g(y) d y
\end{aligned}
$$

The second integral converges since

$$
\begin{equation*}
\left|S(y)-\frac{1}{\pi(y)_{1}}\right| \leqslant \frac{C}{|y|^{3}} \tag{29}
\end{equation*}
$$

see [1]. Since \widetilde{S} and \mathscr{H} are defined up to additive constants for $g \in L^{1}\left(R, d x /\left(1+x^{2}\right)\right)$, we may ignore this term. The third integral converges to $\mathscr{H} g(x)$ a.e. on R.

It is enough to show therefore that the first integral converges to zero at all Lebesgue points of g. Fix $a>1$. We have

$$
\begin{aligned}
\int_{R}(& \left.S(x-y, t)-\frac{1}{\pi(x-y)_{\sqrt{2 t}}}\right) g(y) d y \\
= & \int_{|y| \leqslant a \sqrt{2 t}}\left(S(y, t)-\frac{1}{\pi(y)_{\sqrt{2 t}}}\right) g(x-y) d y \\
& +\int_{|y|>a \sqrt{2 t}}\left(S(y, t)-\frac{1}{\pi(y)_{\sqrt{2}}}\right) g(x-y) d y \\
& =I_{1}+I_{2} .
\end{aligned}
$$

Since $S(y, t)$ and $1 / \pi(y)_{\sqrt{2 t}}$ are odd functions,

$$
I_{1}=\int_{|y| \leqslant a \sqrt{2 t}}\left(S(y, t)-\frac{1}{\pi(y)_{\sqrt{2}}}\right)(g(x-y)-g(x)) d y .
$$

Since $S(x)=O(1 /|x|)$ as $|x| \rightarrow \infty, S(x)$ is a bounded function, so $|S(y, t)| \leqslant C / \sqrt{2 t}$. Clearly also $\left|1 / \pi(y)_{\sqrt{2 t}}\right| \leqslant 1 /(\pi \sqrt{2 t})$, so that

$$
\begin{equation*}
\left|I_{1}\right| \leqslant \frac{C}{\sqrt{2 t}} \int_{|y| \leqslant a \sqrt{2 t}}|g(x-y)-g(x)| d y \rightarrow 0 \tag{30}
\end{equation*}
$$

as $t \rightarrow 0^{+}$, at all Lebesgue points of g.
Since

$$
S(y, t)=\frac{1}{\sqrt{2 t}} S\left(\frac{y}{\sqrt{2 t}}\right)
$$

we have from (29)

$$
\left|S(y, t)-\frac{1}{\pi(y)_{\sqrt{2}}}\right| \leqslant \frac{C t}{|y|^{3}}
$$

Thus

$$
\left|I_{2}\right| \leqslant C t \int_{|y|>a \sqrt{2 t}} \frac{|g(x-y)|}{|y|^{3}} d y
$$

Now decompose $g=g_{1}+g_{2}$, where $g_{1}(x-y)=0$ for $|y|>1$ and $g_{2}(x-y)=0$ for $|y| \leqslant 1$. We have

$$
\begin{equation*}
\left|I_{2}\right| \leqslant C t \int_{a \sqrt{2 t}<|y|<1} \frac{\left|g_{1}(x-y)\right|}{|y|^{3}} d y+C t \int_{|y|>1} \frac{\left|g_{2}(x-y)\right|}{|y|^{3}} d y \tag{31}
\end{equation*}
$$

Note that

$$
\int_{|y|>1} \frac{\left|g_{2}(x-y)\right|}{|y|^{3}} d y=C(x)<\infty
$$

Let $\delta>0$, and observe that

$$
\begin{aligned}
\delta^{2} \int_{|y|>\delta} \frac{\left|g_{1}(x-y)\right|}{|y|^{3}} d y & =\delta^{2} \sum_{l=0}^{\infty} \int_{2^{l} \delta<|y| \leqslant 2^{i+1} \delta} \frac{\left|g_{1}(x-y)\right|}{|y|^{3}} d y \\
& \leqslant \delta^{2} \sum_{l=0}^{\infty} \frac{1}{2^{3 l} \delta^{3}} \int_{|y| \leqslant 2^{l+1} \delta}\left|g_{1}(x-y)\right| d y \\
& \leqslant C \sum_{l=0}^{\infty} \frac{1}{2^{2 l}} \mathscr{M} g_{1}(x) \\
& \leqslant C \mathscr{M} g_{1}(x)
\end{aligned}
$$

where $\mathscr{M} g_{1}$ is the Hardy-Littlewood maximal function. Choosing $\delta=a \sqrt{2 t}$ gives

$$
\begin{equation*}
t \int_{|y|>a \sqrt{2 t}} \frac{\left|g_{1}(x-y)\right|}{|y|^{3}} d y \leqslant \frac{C}{a^{2}} \mathscr{M} g_{1}(x) \tag{32}
\end{equation*}
$$

so that by combining (30), (31), and (32) we have

$$
\limsup _{t \rightarrow 0+}\left|\int_{R}\left(S(x-y, t)-\frac{1}{\pi(x-y)_{\sqrt{2 t}}}\right) g(y) d y\right| \leqslant \frac{C}{a^{2}} \mathscr{M} g_{1}(x)
$$

Since a can be chosen arbitrarily large, the theorem is proved.

References

1. A. P. Calderón and Y. Sagher, "The Hilbert Transform of the Gaussian," to appear.
2. N. N. Lebedev, "Special Functions and Their Applications," Prentice Hall, Englewood Cliffs, NJ, 1965.
3. M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223.
4. D. V. Widder, "The Heat Equation," Academic Press, New York, 1975.
