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Conjugate Temperatures
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We develop Cauchy-Riemann equations for pairs of temperature functions with
boundary values in L l(R, dx/(I + x 2)). © 1992 Academic Press, Inc.

1. INTRODUCTION

The Cauchy-Riemann equations Dxu=Dyv and Dyu= -Dxv can be
viewed as a splitting of Laplace's equation D;u +D;u = O. The pair of
solutions of the Cauchy-Riemann equations, for a large class of functions,
is related via the Hilbert transform.

We show that for a large class of functions the Hilbert transform
similarly splits the heat equation Dtu(x, t) = D;u(x, t).

Write (u(x, t), v(x, t))E..w'Jff if

(1 )

and

(2)

for t> 0 and x E R, where D ~/2 is a Weyl fractional derivative operator (see
below).

We show that for gEL I (R,dx/(1+x2
)), if u(x,t)=g*k(x,t), where

k(x, t) is the Gauss-Weierstrass kernel, then (u(x, t), Jffu(x, t)) E d Jff,
where Jffu(x, t) denotes the Hilbert transform of u(x, t) with respect to the
first variable.
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Weyl's fractional integral of order a> 0 is defined by

(3)

and the fractional derivative of order a> 0 is

(4 )

where a = n - iX, for a positive integer nand 0 < iX ~ 1.
This version of the Weyl fractional derivative was proposed by M. Riesz

in [3]. It is shown in [3] that for functions f which are sufficiently regular
we have DCJ.D{3f=Da+[3f and (djdt)D-1f=/ In particular, if u(x, t) and
v(x, t) are nice enough, then (u(x, t), v(x, t))EdYl' implies

Dtu(x, t)=D~/2D~/2U(X,t)= -iD;/2Dxv(x, t)

= -iDxD~/2V(X, t)=D~u(x, t)

and

Dtv(x, t) = D;/2D;/2V(X, t) = iD;/2Dxu(x, t)

= iDxD;/2U(X, t) = D~v(x, t)

so that u(x, t) and v(x, t) satisfy the heat equation.
For fELP(R), 1~p< 00, the Hilbert transform is defined a.e. by

1f f(s)Yl'f(x) = p.v. - - ds.
n RX-S

(5)

We prove our results for fEL1(R, dxj(l +x2)); this space contains
BMO(R). For fEL1(R, dxj(l +x2)), the above integral might fail to
converge. In this case the Hilbert transform may be defined a.e. up to
additive constants by

Yl'f(x) = P.v.! f (_1_ +-(1) )f(S) ds,
n R x-s s 1

where 1j(s)J = 1js for lsi> (j and zero otherwise.
Suppose fE L 2(R). The Fourier transform offis defined

J(t) = f f(x) e- ixt dx.
R

(6)

(7)
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The function j is obtained from its Fourier transform by the Fourier
inversion formula

1 fA.j(x)=- j(t)e,xtdt.
2n R

(8)

The Fourier transforms ofjEL 2(R) and of Yffare related by the identity
./"'-.. A

Yfj(x)=-isgnx.j(x). (9)

2. CONJUGATE TEMPERATURES

Let '!l(x) = (1/~) e- x2
/
2

• The fundamental solution of the heat
equation is the Gauss-Weierstrass kernel

(10)

We define its conjugate by

(11 )

where

(12)

See [1].
Since k(x, t) = e- tx2 for t> 0, we have from the Fourier InVerSIOn

formula

1 foo 2k(x, t) = - e- ty cos xy dy
n 0

and

1 foo t 2 •S(x,t)=- e- y SInxydy.
n 0

THEOREM 1. For f> 0 and x E R,

(k(x, f), S(x, f))EdYf.

(13 )

(14 )

(15)
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Proof Since

-1 fooDtS(x, t) = - y2e -t
y2 sin xy dy,

n 0

we have

Similarly,

-1 foo
iD~/2k(x,t)= r= D tk(x,u+t)U- 1/2 du

yn 0

=_1_ foo (foo y2e -(u+t)y2 cos xy dY ) U- 1/2 du
n.firo 0

1 f00 (f 00 2 ) 2=-- e- UY U- 1/2 du y2e -ty cos xy dy
n.firo 0

1 foo 2= - ye- ty cos xy dy = DxS(x, t). I
n 0

We now consider conjugate temperatures which are convolutions of
initial values g(x)EL1(R, dxj(1 +x2)) with k(x, t) and S(x, t). However,
for gEL l(R, dxj(1 + x 2)), the convolution g * S(x, t) is not always defined
because S(x, t) = O(1jlxl) as Ixl ---+ 00; see, e.g., [2]. Therefore, in analogy
with (6), we define up to additive constants

Sg(x, t)= f [S(x-y, t)+S(y)]g(y)dy.
R

(16)

This operator is defined for gEL1(R, dxj(1 +x2)) since, as we will show
later,

S(x- y, t) + S(y) = 0 C~), IYI ---+ 00.
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We show that for gEL 1(R, dx/(1 +x2)) we have

(g * k(x, t), Sg(x, t)) E sfYf.

For gELP(R), 1~p< 00, since D;/2(1)=0, this is equivalent to

43

We denote by C a positive constant, not necessarily the same on different
occurrences.

LEMMA 2. If 0 < a < 1, f3 > 2a, x> 0; and if for all t> 0,

. {II}ID, w(t)1 ~ mm x P' t f3/2 '

then

Proof Since

e
inrx fooD; - X w(t) = F( a) 0 D, w(u + t) U

X
- 1 du,

we have

1 - a ~ _1_ f00 1 a-I _ F( (f3 - 2a)/2) 1
ID, w(t)1 '"" r(a) 0 (u + t)P/2 u du - r(fJ/2) . t(f3- 2a )/2'

We also have

LEMMA 3. For t> 0 and x E R, we have

(17)

(18)

(19)
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and

Proof Note that
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(20)

and for t, f3 > 0

(21 )

We have for x 2 > 2t

1 x
2

1 -x2/4t
IDtk(x,t)l~ ;:--2 -5i2 e

4 y n t

«~_ (10)5/2 __1_

"8 fi e Ixl 5

1 (10)5/2 {II}
= 8 fi --;- .min Ix1 3 ' (2t)3/2 -

We have for x 2 ~ 2t

1 1 1 {23
/
2 I}

IDtk(x, t)1 ~ ;: ~= ;: -min -I13'~ -
4 y n t 4 y n x t

This proves (18).
Observe that DxS(x, t) = iD~/2k(x, t). Therefore by Lemma 2 applied to

(18), we have

. {I I}IDxS(x, t)1 ~ C· mm x2' t '

which proves (19).
Since DtS(x, t)=D~/2D~/2S(X, t)=iD~/2(Dxk(x,t)), the proof of (20) is

similar. I

LEMMA 4. For t > 0 and x, y E R,

(
IXI Ixl )

IS(x-y, t)+S(y)1 ~C- -t X{IYI~2Ixll(Y)+7X{IYI>2Ixll(Y)

C . {It-1121 1ft- II }
+ -mm IYI3' Jl' (22)
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Proof Since 8(y, t) = - 8( - Y, t) we have

18(y, t) + 8(x - y, t)1 ~ sgn x r ID s 8(s, t)1 ds
y-x

~ C . sgn xr min {~, \ ~ ds.
y-x t s J

45

For all y, the last term is majorized by C· Ixl/t. If Iyl > 21xl, then the
integral is majorized by

fy I I x I 21xlsgn x 2: ds = ( ) ~ -2.
y-xS Y y-x Y

We have shown that

(
IXI Ixl )

18(y,t)+8(x-y,t)I~C· -t X1IYIOIXll(Y)+7Xl!YI>2IXll(Y) .

We show next that

(23)

. {It-1121 lfit- l l}
18(y,t)-8(y)I~C·mm IYI3' Jt. (24)

Since 8(y) = 8(y, !), we have

18(y, t) - 8(y)1 ~ sgn (t -D (2 ID,8(y, r)1 dr

~ C. sgn (t -D(2 min {I ;13' )/2} dr

. {It-1121 Ifit- 111
~C.mm IYI3' Jt J'

By combining (23) and (24) we get the result. I
In particular Lemma 4 shows

18(x - y, t) + 8(y)1 = 0 (;2), Iyl ~ co. (25)

THEOREM 5. Ijg(x)EL 1(R, dx/(1 +x2
)), then for t>O and xER,

- W:/2 Sg(x, t) = DAg * k)(x, t). (26)
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Proof It is easy to see that

D tf (S(X-y, t)+S(y))g(y)dy= f DtS(x-y, t)g(y)dy.
R R

Therefore,

D~/2 f (S(X - y, t) + S(y)) g(y) dy
R

= j;r' Dt(t (S(X- y ,U+t)+S(y))g(y)dY )U-1/2 dU

= j;r' (t DtS(x - y, U+ t) g(y) dY ) U- 1/2 du

= j;tg(y)(f" DtS(x-y, U+t)U- 1/2 dU) dy

= f g(y) D~/2 S(X- y, t) dy
R

= if g(y) Dxk(x - y, t) dy
R

= iDAg * k)(x, t).

Here the application of Fubini's theorem is justified by

tOO IDtS(y, U+t)1 U-
1
/
2

du ~ C f" min {1;13' (u +\)3/2} U-
1
/
2

du

~ C .min {:2' H· I

THEOREM 6. Ijg(x)EL1(R, dx/(l +x2)), then for t>O and xER,

iD~/2(g * k)(x, t)=DxSg(x, t).

Proof

D~/2Lg(x - y) k(y, t) dy

= J;-tOO

Dt(Lg(X-y)k(y,U+t)dY)U-l/2dU

(27)
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= J; [' (t g(x- y) Dtk(y, u + t) dY ) U- 1
/
2du

= j;tg(X-y)([J Dtk(y,U+t)U- 1
/
2dU)dY

= f g(x- y) D;/2 k(y, t) dy
R

=-if g(x-y)DyS(y,t)dy
R

=-if g(y)DyS(x-y,t)dy
R

=-if g(y)DAS(x-y,t)+S(y))dy
R

= -iDxSg(x, t).

Here the application of Fubini's theorem is justified by (18). I
It is well-known that for gEL 1(R, dxj(1 +x2)),

lim g * k(x, t) = g(x)
t~O+
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at all Lebesgue points of g(x). (In fact this holds for a much larger class
of functions; see, e.g., [4].) The following theorem was proved in [1] for
g E LP(R), 1~p < 00.

THEOREM 7. For gEL 1(R, dxj(1 +x2)),

lim Sg(x, t) = Yl'g(x)
t--+O+

Proof

a.e. on R. (28)

Sg(x, t)= f (S(x-y, t)+S(y))g(y)dy
R

=f (S(X-y,t)- ( 1) )g(Y)dY
R nX-Yfi

+t (S(y)- n(~)Jg(Y)dY

+~f (( _1) +_(1) )g(y)dY.
1CR x yfi Yl

640/70/1-4
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The second integral converges since

(29)

see [1]. Since Sand Yf are defined up to additive constants for
gEL 1(R,dx/(1+x2

)), we may ignore this term. The third integral
converges to Yfg(x) a.e. on R.

It is enough to show therefore that the first integral converges to zero at
all Lebesgue points of g. Fix a> 1. We have

f (S(X-y,t)- ( 1) )g(Y)dy
R nx-y,j2t

=f (S(y,t)- (\ )g(X-Y)dY
lyl<;;a,j2t n Y ,j2t

+ f (S(Y, t)- (\ )g(X-Y)dY
Iyl >a,j2t n Y ,j2t

=11 +12 ,

Since S(y, t) and l/n(y),j2t are odd functions,

II = f (S(Y, t) - (1) ) (g(x - y) - g(x)) dy.
Iyl <;; a,j2t n Y ,j2t

Since S(x)= O(l/lxl) as Ixl ~ 00, S(x) is a bounded function, so

IS(y, t)1 ~ c;fit· Clearly also 11/n(Y),j2t1 ~ l/(n fit), so that

111 1~ ~f Ig(x-y)-g(x)1 dy~O (30)
v 2t Iyl <;;a,j2t

as t ~ 0 + , at all Lebesgue points of g.
Since

we have from (29)

I
1 I Ct

S(y, t)- n(y),j2t ~ lyl3'

Thus



CONJUGATE TEMPERATURES 49

Now decompose g=g!+gz, where g!(x-y)=O for lyl>1 and
gz(x-y)=Ofor lyl~1. We have

(31 )

Note that

f Igz(x ~ y)1 dy = C(x) < 00.

Iyl>! Iyl

Let b > 0, and observe that

co 1
~ C L 2z1 Ag1(x)

I~O

~CAg!(x),

where A g 1 is the Hardy~Littlewood maximal function. Choosing
b = a fit gives

(32)

so that by combining (30), (31), and (32) we have

lim sup If (S(X-y,t)- ( 1) )g(Y)dyl~~Agl(X).
I~O+ R n x-y .j2i a

Since a can be chosen arbitrarily large, the theorem is proved. I
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