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Conjugate Temperatures
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We develop Cauchy-Riemann equations for pairs of temperature functions with
boundary values in L!(R, dx/(1 +x?)). © 1992 Academic Press, Inc.

1. INTRODUCTION

The Cauchy-Riemann equations D,u=D,v and D,u= —D, v can be
viewed as a splitting of Laplace’s equation D§u+D§u=O. The pair of
solutions of the Cauchy—Riemann equations, for a large class of functions,
is related via the Hilbert transform.

We show that for a large class of functions the Hilbert transform
similarly splits the heat equation D,u(x, ) = D u(x, t).

Write (u(x, 1), v(x, t)) e L H# if

D u(x, t)= —iD?v(x, 1) (1)

and
iDYu(x, t)= D, v(x, ) (2)

for t>0 and x e R, where D' is a Weyl fractional derivative operator (see
below). ’

We show that for ge LY(R, dx/(1+ x?)), if u(x, t)=g = k(x, t), where
k(x, t} is the Gauss—Weierstrass kernel, then (u(x, t), #ulx,t))e AH,
where H#u(x, t) denotes the Hilbert transform of u{x, 1) with respect to the
first variable.
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Weyl’s fractional integral of order « > 0 is defined by

D=0 = s || F 1 ()

I(o

and the fractional derivative of order a >0 is

ind
e

D)= [ )~ 1) d (4)

I(a@)J,

where o =n — &, for a positive integer n and 0 <@ < 1.

This version of the Weyl fractional derivative was proposed by M. Riesz
in [3]. It is shown in [37] that for functions f which are sufficiently regular
we have D*DPf=D**#f and (d/dt) D~'f=f. In particular, if u(x, ¢) and
v{x, #) are nice enough, then (u(x, ), v(x, t)) e &/ # implies

D,u(x, t)=DY*Du(x, t)= —iD'*D v(x, 1)
= —iD, DYv(x, t) = D*u(x, t)
and
D,v(x, t)=DY*D?v(x, t) =iD*D u(x, )
=iD, D }*u(x, )= D>v(x, t)

so that u(x, t) and v(x, ¢) satisfy the heat equation.
For fe L?(R), 1 < p < oo, the Hilbert transform is defined a.e. by

Hf(x)=pv. % jR ){ (_S)s

ds. (5)

We prove our results for feL'(R,dx/(1+ x?)); this space contains
BMO(R). For feL'(R,dx/(1+x?)), the above integral might fail to
converge. In this case the Hilbert transform may be defined ae. up to
additive constants by

Hf(x)=p.v. % J, (—1— + L) 1(s) ds, (6)

x—s (s)

where 1/(s); = 1/s for |s] > 6 and zero otherwise.
Suppose fe L%(R). The Fourier transform of f is defined

f(z)=ij(x) e dx, (7
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The function f is obtained from its Fourier transform by the Fourier
inversion formula

f) =5 fye ()

1
2n
The Fourier transforms of f'e L*(R) and of #f are related by the identity

SN "
Hf(x)= —isgn x-f(x) (9

e

2. CONJUGATE TEMPERATURES

Let %(x)=(1//2n)e~*"*. The fundamental solution of the heat
equation is the Gauss—Weierstrass kernel

1 X 1 2
k(x, t)= 9 = x4, 10
0= <ﬁ) N 1o

We define its conjugate by

1 x
S == 8| —=], 11
0= (ﬁ> (11)

where
1 —x%/2 * w22 3\
S(x)= #%(x)=~e f ¢ du. (12)
T 0

See [1].
Since k(x, t)=e"”‘2 for t>0, we have from the Fourier inversion
formula

1 reo
k(x, z):-j e~ cos xy dy (13)
Yo
and
1o 5.
S(x, t).—:—J e 7 sin xy dy. {14)
Yo

THEOREM 1. For t>0 and xe R,

(k(x, 1), S(x, 1)) e A H. (15)
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Proof. Since
—1 oo .
D, S(x, t)=—J y’e Y sin xy dy,
T Yo
we have

—iD}¥? S(x, £)= “Dp SO u+t)yu Y du

§||H
_
[=]

j (j yle et 0y smxydy) 12 du
(4]

|
,_.§

j (J e Wy du> y%e~ " sin xy dy
0

o0

ye " sin xy dy = D k(x, 1).

3
Lﬁ%’

I
|
=

0

Similarly,

iDYk(x, t)= D, k(x,u+t)yu="?du

Tf

= Jw Ooyze’(‘””)y2 Ccos xy dy>ul/2 du
nﬁ 0 (fo

_ 1 J‘OO <f00 e*uyzufl/Z du) 2, —1?

= ve Y cos xy dy
7‘[,\/; 0 0

1 reo
=—.[ ye~ ¥ cosxy dy=D,S(x,1). 1|
T Y0

We now consider conjugate temperatures which are convolutions of
initial values g(x)e L'(R, dx/(1 + x?)) with k(x, t) and S(x, t). However,
for g e L(R, dx/(1+ x?)), the convolution g * S(x, ¢) is not always defined
because S(x, {)=O0(1/|x|) as |x| — oo; see, e.g., [2]. Therefore, in analogy
with (6), we define up to additive constants

Se(x, =] [S(x=y.0+5(1150) dy. (16)

This operator is defined for ge L'(R, dx/(1 + x?)) since, as we will show
later,

1
Sx—y, t)+S(y)=0(;2-), Iyl = oo,
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We show that for ge LY(R, dx/(1 + x*)) we have
(g*k(x, 1), Sg(x,1))eAH.
For ge L?(R), 1 <p< oo, since D}*(1) =0, this is equivalent to
(gxk(x,1),gxS(x, t))eAH.

We denote by C a positive constant, not necessarily the same on different
occurrences.

LemMma 2. If O<a<l, f>2a, x>0; and if for all >0,

. 1 1
ID,W(I)] <min {;ﬁ’ ;m},
then
PP {30

|D}‘“w(t)l<C-min{ ! —1—~} (17

Proof. Since
ez‘mz

I'(o)

DI =*w(1) = L Dow(u+t)u* " du,

we have

1 am1 I'((B—20)2) 1
u du=

l1—a 1 *
PO | rpR)

We also have

2

1 1 px o 1
11—« a—1 x—1
|D;*w(t)] <——(a) (_—xﬁ L w* =l du+ Lz ——————(u+ AYE u du)

< 1 ( 1 + 2 1 ) I
S \oxf2* T p—2a xF-2)
LemMma 3. For t>0 and xe R, we have

| D, k(x, I)ISC-min{ L1 }, {(18)

x> 7

. 1 1
|D.S(x, t)] <C-min {;5, ?f’ (19
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and

. 1 1
|D,S(x, t)] < C-min {W, 7375} (20)

Proof. Note that

1 x2 1 2
— — 1 — x*/4t
D,k(x, t) 4\/;(21 ) t3/2e

and for ¢, f>0

1 o VA
e /4<<?> T 1)
We have for x2> 2t
1 x2 1 )
Dk(x, 1)) S —= = e
| t (X )l 4\/; ) t5/2e

X2 [10\? 1
< o — [P
8 ( e> x|

)" e
T8 mle ERACIESS

Bl

We have for x? <2t
1

1 1 Co(2%2 1
ID,k(x, l)l<4 - ;575=Z/_—7;-m1n W,t_}/_z— .

This proves (18).
Observe that D, _S(x, t)=iD}?k(x, t). Therefore by Lemma 2 applied to
(18), we have

o f1 1
|D,S(x, t)] <C-min {;, ;},

which proves (19).

Since D,S(x, t)= D> DY*S(x, t)=iD}*(D k(x, t)), the proof of (20) is
similar. ]

LemMMA 4. For t>0 and x, ye R,

[S(x—y, )+ S(y)l < C(@ X{ly\<2lx|}(y)+|yizlx{ly|>2|x|}(y))
o {11 W)
|1 Jt

(22)
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Proof. Since S(y, t)= —S(—y, t) we have
y
IS(r, 1)+ Stx—y, O <sgnx [ 1D,S(s, 1) ds
y—Xx
y {11
<C-sgnxj min {;,;2-} ds.

y—x

For all y, the last term is majorized by C-|x|/t. If [y| >2|x|, then the
integral is majorized by

X
Wy—x)

2|x]
=" 35 -

y

v 1
sgnxf —zds:‘

y—xS

We have shown that

|x] |x]

IS(y, 1)+ S(x—yp, 1) < C(T X{|y|<2]x|}(y)+7X{[y|>2|x}(y)>' (23)

We show next that

1S(y, l)—S(y)ISC-min{it_lgzls|\/Z—I|}- (24)
|yl V1

Since S(y)=S(y, 1), we have

1 t
St 0= 50 <sen (13 | 1050 0 as
12

N (11
<C-sgn <l'—§> -[1/2 min {W’ m} dt
sc'min{|t—13/2|’|\/5—1|}.

|7l J1

By combining (23) and (24) we get the result. §

In particular Lemma 4 shows
1
SE=p0+501=0(5). bl 25)

THEOREM 5. If g(x)e LY(R, dx/(1 + x?)), then for t>0 and x€ R,

—iDY2 Sg(x, 1) =D (g * k)(x, ). (26}
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Proof. 1t is easy to see that
D,[ (SCx=y.0+S(M g dy=] D.Sx=p1)g(») dy.
Therefore,

D[ (Stx—y.0)+S()) g(») dy
=—ﬁ [, (] (stx—p 04 SO 31y a2
=ﬁf (L D, S(x—y,u+1)g(y) dy) u="? du
:_ﬁJR () (Lm D,S(x—y,u+1yu~'? du) dy
=JR g(y) D2 S(x—y, 1) dy

=i| g) Dokx—y. 0 dy
=iD (g * k)x, t).

Here the application of Fubini’s theorem is justified by

0 0 1 1
DS Hu?dusC in<—s, ——=5
jo |D,S(y,u+1)| u i fo rn1n{|y|3 PEIEE

}ul/z du
11
<C-min{=, ~».
il
THEOREM 6. If g(x)e LY(R, dx/(1 + x?)), then for t>0 and x€ R,
iD*(g * k)(x, t)= D, Sg(x, 1). (27

Proof.

DY [ g(x—y)k(y.0)dy

joo D,(J g(x—y)k(y, u+t) a’y)u‘l/2 du
0 R

NG
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foo <j g(x—y)D,k(y, u+1) dy) w2 gy

Gl -

| gtx=y) (j:o Dk(y, u+t)u " du> dy

g(x—y)D* k(y, 1) dy

X

- _,-jRg(x—y)DyS(y, 1) dy
= _iL g(») D, S(x~y, t)dy

- _ifR () Do(S(x —y, £) + S(3)) dy
= —iD Sg(x, t).

Here the application of Fubini’s theorem is justified by (18). §
It is well-known that for ge LY(R, dx/(1 + x?)),

lim g = k(x, t)=g(x)
10+
at all Lebesgue points of g(x). (In fact this holds for a much larger class
of functions; see, e.g., [4].) The following theorem was proved in [1] for
geL?(R), 1<p< 0.
THEOREM 7. For ge L*(R, dx/(1 +x?)),
lim Sg(x, 1) = #g(x) a.e. on R. (28)
t—>0+
Proof.

Sete =] (SGe—y.0)+S(1) g dy

1
=L <S(x—y, f)—m> g(y)dy

+f (5057 ) e @

] ((x——;ﬁ*(—yli)g(”dy'

640/70/1-4
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The second integral converges since

C

‘ S) = Iyl3’

n(y)l

(29)

see [1]. Since § and # are defined up to additive constants for
ge LY(R, dx/(1+x?)), we may ignore this term. The third integral

converges to #°g(x) a.e. on R.

It is enough to show therefore that the first integral converges to zero at

all Lebesgue points of g. Fix a> 1. We have

J, (st 0=

2t

) e

1
- . ) d
jlylsaﬁ? (S(y, g ﬂ()’)ﬁ) glx=y)dy

1
S(y, t)— —y)d
" |y|>aﬁ< (9 R(Y)ﬁ>g(x N

=11+12.

Since S(y, ) and 1/n(y) s are odd functions,

1
a )= —y)—g(x)) dy.
! flyISaﬁ<S(y ) n(y)ﬁ;)(g(x y)—g(x))dy

Since S(x)=0(1/|x|]) as |x] > o0, S(x) is a bounded function,

|S(y, )] < C/y/2t. Clearly also [1/n(y) 7l < 1/(n /21), so that

1] < \/—f||<f|g(x y)—g

as t » 07", at all Lebesgue points of g.
Since

S, z)=%s(ﬁ),

we have from (29)

1 Ct
’S(y, ) ————| <.
() szl I
Thus
\L| < Ct [g(x—y) P

yisayzm o YI°

(x)| dy >0

SO

(30)
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Now decompose g=g,+g,, where g(x—y)=0 for |y|>1 and
gx{x—y)=0for |y| <1. We have

lg:(x—y)| |g2(x — )l
|l < Ct = dy + Ct == dy. (3
? L 2i< |yl <1 |yl? Y jiyl>1 IJ’P
Note that
j Ig_z(f_:_y_)l dy=C(x)< 0.
yi>1 Iyl
Let 6 >0, and observe that
52j Igl(x—ay)l dy = j lgl(x—sy)l p
Iyl>é 1yl =g 2s<iyi<2tls | ¥l
<6’ i ;f lg (x—y)l dy
1=023153 Iy <2+15
© 1
<C Y Mg, (x)
l=02
gC“%gl(x)’

where #g, is the Hardy-Littlewood maximal function. Choosing
5=a\/z gives

|g:(x— )| ¢
= dy < — Mgi(x), (32)
jlyl>a\/5 [yl Y a* 3
so that by combining (30), (31), and (32) we have

lim sup
t—>0+

1
J (St - = st by < (o)
] =) a

Since @ can be chosen arbitrarily large, the theorem is proved. §
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